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Abstract. The electrical transport properties of one-dimensional tight-binding models, with 
correlation between diagonal and off-diagonal disorder, are obtained using Felderhof‘s 
method. A new local transformation eliminating the off-diagonal disorder is utilised. The 
characterisation of the type of correlation for the existence of a critical energy E, ,  at which 
transmission exists, is found. It  is a generalisation, in some sense. of the well known 
transmission at the band centre for the case with only off-diagonal disorder. For the 
high-wavenumber approximation we find explicitly the inverse localisation length which, 
close to E,, behaves as IE - E,I’. with v = 1 at the edges of the band and v = 2 otherwise. 
The transmission for a wavepacket around E ,  is analysed for samples of finite size. 

1. Introduction 

We consider the one-dimensional (ID) tight-binding (TB) Hamiltonian given by 

where each state I I )  is an atomic-like orbital centred at the site 1. The sites I form a 
lattice and the set { I / ) , /  E Z) is an orthogonal base in the space I2(Z).  The quantity n, 
is the energy of an electron at the /-position in the absence of the nearest-neighbour 
transfer rate a/. We denote by Ix) the eigenfunction of the operator H with eigenvalue 
E .  Expanding 11) in terms of the basis { 11)) we have 

so the time-independent Schrodinger equation can be written as 

In the case where only the n, are random independent variables and 9, = 1 
(diagonal disorder) we recover the Anderson model [I]. A remarkable fact is that 
the wavefunctions are always exponentially localised [2, 31, whereas in the absence of 
disorder the wavefunctions are extended Bloch states. The static conductivity is given 
by the Kubo formula and the diffusion constant is zero [4] because of localisation. 
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In the case where only the 8, are random independent variables and Q, = 0 
(off-diagonal disorder), it is known that the band centre ( E  = 0) is an extended state 
[5,  61. We remark that, physically, off-diagonal disorder may be more directly related 
to structural characteristics of the disordered medium [7] (liquid-like stucture). 

We will discuss the situation in which both diagonal and off-diagonal disorder 
are present. For this we proceed by finding a transformation that maps the general 
equation (1.3) to an equation that is of a form similar to the diagonal disorder case. The 
usual methods for that case (see, for example, [SI) will be adapted to this new equation. 
We apply this transformation to our models with correlation between diagonal and 
off-diagonal disorder. We investigate the conditions for the existence of a critical energy 
E ,  at which transmission (delocalisation) exists. This is a generalisation, in some sense, 
of the case with off-diagonal disorder only where the critical energy is at the band 
centre [6]. We find that the existence of E,  is linked to the type of correlation between 
diagonal and off-diagonal disorder, and therefore the microscopic details are important 
in the transmission properties of the system. Moreover only for a special correlation 
type does the critical energy exist. The asymptotic behaviour of the inverse of the 
localisation length 1-' can be calculated in the high-wavenumber limit. Close to E,, 
when the conditions for the existence (of E,) are satisfied, this behaviour is given by 
the form I-' - IE -E,I' with v = 2 if /E,I # 2, or 11 = 1 if lE,I = 2. /El = 2 corresponds 
to the band edges. 

We note that a large number of physical problems can be described by an equation 
of general type (1.3)-for example, lattice vibrations of a harmonic chain, electrical 
lines or classical diffusion in random media [9, lo]. 

In $ 2  we describe the TB model where the diagonal and off-diagonal disorder 
are correlated at each impurity. In $3, a new local transformation eliminating the 
off-diagonal component of disorder is proposed for the general case, and applied to 
our model. In $ 4  Felderhof's method is adapted to study the transport properties in 
these models. The existence of E,  is discussed in $ 0 5  and 6 for the cases where the 
wavelength is short and the wavelength is not short, respectively. Finally, in $ 7  a 
simple example with two kinds of impurities is given and the critical energy is found 
explicitly. 

2. The model 

In the TB equation (1.3), we consider the case with N random impurities where each 
impurity is placed at a random position x, ( n  = 1,2,. . . , N )  on the background. For 
the binding energy R,, and 

Q + { O  V,,  

1 
9, = L, 

the transfer rate 9, we take 

for / # x,, 
for 1 = x, 

for 1 # x,,x, + 1 
for 1 = x,,x, + 1 

where v,, and p,, > 0 are real random quantities. 
advantageous variables 

Now we introduce the more 
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We remark that w, is directly related to the off-diagonal disorder variable and U, 
includes the diagonal disorder variable. For these real random quantities we consider 
the probability density p given by 

where both F and G are normalised to unity and t,, = (x, - x n p 1 ) .  The average 
over either F or G will be denoted by the brackets (..), whereas the average over the 
complete probability distribution (2.5) will be denoted by ( . . )F ,G .  The first impurity is 
fixed at x1 = 0, and the relative distances 5 ,  are independent random variables with 
the same probability density F .  The support of F is such that no overlap between 
impurities occurs. Further, we assume 

which can be interpreted as a condition of weak density of impurities. The random 
variables U, and w,, are correlated, but each impurity (u,,w,) is independent and 
governed by the same distribution G. 

Finally, we remark that the TB Hamiltonian H can be represented by the tridiagonal 
matrix 

(2.7) 

3. Transformation from off-diagonal to diagonal TB 

The transmission and spectral properties for systems with only diagonal disorder, in 
one dimension, are well known. The localisation of the states and the absence of 
transmission has been rigorously proved [2, 31. The existence of a transformation from 
off-diagonal to diagonal TB has therefore practical importance. 

We express the wavefunction 4, of the Schrodinger equation (1.3), in terms of a 
new variable w, defined by the local transformation 

vi = 4/43 (3.1) 

where the quantity 'pi is given by the simple recursicn formula 

Then the equation for vI is given by 
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which involves only diagonal disorder. We remark that this is a generalised eigenvalue 
equation for y ,  ( E y ,  is multiplied by I'p,12). However, the methods for the usual 
eigenvalue problem are easily adapted to this case. 

In the interesting case when the a, are independent identical random variables 
and 9, is a deterministic function of I ,  the equation (3.3) becomes similar to the 
Anderson model with modulation (i'p,i2). Because, recently, artificial structures with 
practically arbitrary properties as a function of linear distance have become available 
in microstructures, the investigation of a random array with modulation has practical 
interest. For example in [lo] the case where 1'p1I2 - 1" (ti I 0) was studied and a 
crossover (ti = -i) between the metallic and insulator regimes was found. 

Now we consider the statistical behaviour of the random quantity l(p,j2, when 9/ 
are random independent variables for any 1 (this is not the case in the model of $ 2 ) .  
For simplicity we suppose that the 9, are real quantities governed by the probability 
distribution g, given by 

for 1 - v  I Y, I 1 + v  
otherwise 

where y~ (< 1) is a real positive parameter. Due to (3.2) we have that 

9 , - 1  9 1  
'p, = 3, . . .  g 'Po. 

(3.4) 

(3.5) 

For convenience we suppose that 1 is an  even number and we take the initial condition 
'pa = 1. 

Then by (3.4) and (3.5) we have that 

and due to (3.6) and (3.7) we see that the random quantity l'pJ2 

statistical behaviour when I -+ E', because the relative fluctuations 

(3.7) 

has an anomalous 

are exponentially divergent with 1. 
Finally we remark that the function 4, = i 'q, is a solution of the TB equation (1.3) 

(with 8, real) in the band centre E = 0 when only off-diagonal disorder is present 
(Q, = 0). 

4. Transfer matrix technique: Felderhof's method 

Now we apply the transformation defined in $ 3 to the model. In this case the solution 
of the recursion formula for 'p, is simple and given by 

1 for I # x, 
for 1 = x,. ' P I  = { 1/p,  
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Thus when 1 # x,, we have cpI = I,!?/ and the transmission and reflection coefficients are 
the same in both representations. The diagonal equation for the amplitude y i  in this 
case is written as 

with the new random diagonal potential VI given by 

0 for 1 + x, 
for 1 = x,. ' 1  = { U,, - Ew, (4.3) 

The random quantities U,, and w,, are given by (2.3) and (2.4) with probability distri- 
bution p (2.5). Equation (4.2) is similar to the Anderson model with a weak density of 
impurities ((x,, - xn-,)  > 2). We can conveniently evaluate the transmission properties 
using the transfer-matrix technique and in particular Felderhof's method [l l] .  So 
we consider that on the left of the system ( I  < x,), the solution of (4.2) is given by 
", = + e-ikI . On the right of the system (1 > xN) y ,  = teik', and with the usual 
definition of the transmission and reflection coefficient, T = Ill2, R = Ir12, we have that 
R + T = 1. The wavenumber k is given by the dispersion relation 

E = 2 ~ 0 s k  (4.4) 

the condition IEl < 2 gives us the appropriate interpretation for the transmission 
coefficients T and R.  We remark that the band edges are given by the relation IEJ = 2. 

The transfer matrix relating the wavefunction across the system, is obtained as the 
product of individual transfer matrices. Let us consider the interval x,,-~ < 1 < x, 
where the solution for y ,  (and 4/) can be written as 

vI = A, eik' + B,, e-iki q - 1  < 1 < x,,. (4.5) 

Now using the condition of weak density of impurities (5, > 2) we match the wave- 
functions on the right and left of an impurity (located at the x, position) with the help 
of (4.2). This yields the transfer matrix M(n) relating the amplitudes (An+l,Bn+l) and 
(An,',) by 

with 

and 

p, = 7 VK,, 
2 sin k 

c(, = 1 -ip, 

(4.7) 

The ratio between the reflection and transmission coefficients across the sample 
with N impurities is written as [ l l ]  

R / T  = ;(I-- 1) (4.9) 
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where the quantity r is given by a product of the random independent matrices 

l- = {K(N)U(S,V)~~ ' U(52)K(1))(2,2). (4.10) 

The symbol { . . } ( 2 , 2 )  designates the element (2,2) in the product matrix. The three- 
dimensional collision matrix K and the propagation matrix U are given by 

(4.1 1) 

(4.12) 

We note that every matrix (K(n) - I)  is statistically independent and depends linearly 
on V,,, and v:~. 

Due to the form of the probability distribution p (2.5) we have that 

(l-)F,G = {(K(N))(U(S,)). . . (u(t*))(K(1))}(2,2). (4.13) 

The complete calculation of ( r ) F , G  (or ( R / T ) F , G )  requires evaluation of a power of 
the three-dimensional matrix (U)(K), this can be achieved by standard methods (see, 
for example, [12]). The growth rate of (r)F,G is given by the inverse localisation length 
I - '  = ln(&), where ?.o is the largest positive real root of the characteristic equation 

Jill - (U)(K)J = 0. (4.14) 

Finally it is interesting to note that the electrical resistivity in a disordered (ID) 
system is proportional to the ratio R / T  as was first argued by Landauer [13, 141. 

5. Large-wavenumber limit 

We consider now the approximation 

k(x,+, - x n )  % 1. 

Then (eiktil) N 0 and the average propagator (U) is given by 

Thus by (4.13)- we have that, in this approximation, 

(5.3) 

(5.4) 

with 
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In this expression the averages (with respect to the distribution G) are n-independent. 
Due to the inequality 

satisfied by any distribution G, we always have a* 2 0 for every real energy E .  So two 
different types of behaviour (a2 > 0 or a2 = 0) in the transmission properties can be 
found in the system. 

(i) When a2 > 0 there is exponential localisation since by (5.3) we have 

(RIT)F.G - exp (l-” (5.6) 

in the limit N -+ W .  The inverse localisation length I-’ (we take the distance factor as 
one) is given by 

We remark that in the band centre, E = 0, the localisation length depends only on the 
second moment of U,. 

It is interesting to note that when the energy is close to the edges of the band 
(IEI - 2), the localisation length is close to zero, i.e. the localisation is maximal. 

(ii) When a* = 0 we have total transmission since from (5.3) and (4.9) we have that 

(RIT)F.G = 0. (5 .8)  

The condition o2 = 0 can be satisfied only when the two random quantities U, and 
w,, are proportional to each other, or 

U,, = E,w,. (5.9) 

Here the constant E ,  becomes the critical energy when there is transmission. So E ,  
exists only for a particular form of the distribution G. 

In the original variables, the binding energy v, and the transfer rate p,, the relation 
(5.9) is equivalent to the equation 

v,, = E,(1 4- p f l h  2 (5.10) 

When E # E, and the relation (5.9) is verified, we always have exponential 
localisation and by (5.7) it is easy to see that, close to E,, the inverse localisation length 
behaves as 

I-’ - IE - E,I” (5.1 1) 

where v = 2 if lEcl # 2 and v = 1 if IE,l = 2 (the band edges). 
Now we discuss briefly the transmission properties for a wavepacket with energy 

centred around E,. If we consider a system where (5.9) is verified and with fixed size 
N = No, then by (5.11) we have an energy range of width A E  given by 

A E  % 1 / a  (5.12) 

around E,  # 2 where the localisation length I is greater than No (quasi-metallic regime). 
We therefore conjecture that for a system of finite size No, one will find transmission 
for wavepackets with energy support [E, + i A E ,  E ,  - iA.E]. This transmission should 
therefore be experimentally observable. 
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6. E,  for arbitrary wavenumber 

Here we discuss briefly the conditions for the existence of a critical energy beyond 
the approximation (5.1). From the expression (4.13) for ( I - ) F , G  we see that there is 
transmission when (K) = 1. Since (K - I) is linear in ( Vx,,) and (V,",), the conditions for 
transmission are 

( V,,,) = 0 (6.1) 

(f.,?,) = 0. (6.2) 

The condition (6.2) has been discussed in the preceding section. Thus the relation (5.9) 
on G is always necessary for the existence of E,. 

On the other hand the condition (6.1) is also true at E = E ,  when (5.9) is verified. 
So the linear relation between the random variables U and w is a necessary and 
sufficient condition for the existence of the critical energy E = E,  where transmission 
( ( R I T )  = 0) takes place. 

In the next section a simple example with total transmission at E ,  is studied. 

7. An example: two types of atomic impurities 

Here we consider the particular distribution given by 

G(u,\Y) = ~ ( 6 ( ~ - a a ) 6 ( w - b ) - + 6 ( ~ + ~ ) 6 ( w + b ) )  (7.1) 

where 6 is the Dirac function, a and 5 are real quantities and lbl < 1. This can be 
interpreted as a lattice (background) with two species of atomic impurities, A and B. 
Thus the binding energy Cl, and the transfer rate 9,, are given by 

for impurity A 
Q(A) = a / ( l  + b )  
3 ( A )  = 1 / J l + b  

for impurity B. 
R(B) = - ~ / ( l  - b) 
9 ( B )  = 1," 

The distribution (7.1) is equivalent to a linear relation between the quantities U and 
w where the constant of proportionality is given by a /b ,  so the critical energy is given 
by the simple expression 

E,  = a/b. ( 7 4  

We remark that when a = 0 (i.e. only off-diagonal disorder) one has E,  = 0 (band 

When b + 0, one has that E ,  -+ m and there is no finite critical energy. This is 

Finally, in the large-wavenumber limit we have, due to (5.7), that the inverse 

centre) as in [6]. 

similar to the Anderson model with only diagonal disorder. 

localisation length is given explicitly by 

(7.3) 

and the behaviour close to E,  is given by (5.11). 
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8. Conclusions 

In the TB model with correlation between diagonal and off-diagonal disorder of 5 2 ,  
the general local transformation of $ 3  has been used to eliminate the off-diagonal 
component of disorder. Then using Felderhof's method we find the characterisation 
on the correlations for the existence of the critical energy E,  where total transmission 
takes place. We find that only for a particular relation (or type of correlation) between 
diagonal and off-diagonal disorder ((5.9) or (5.10)) is transmission possible. This is a 
generalisation of the well known transmission in the band centre when only off-diagonal 
disorder [6] is present. 

In the large-wavenumber case, the inverse of the localisation length 1" was obtained 
explicitly (equation (5 .7)) .  Close to E,, when the special condition on the correlation 
(5.9) is satisfied, the behaviour is given by I-' z / E  - Ec/ '  where v = 2 or v = 1 
depending on whether IE,l is or is not at the band edges, respectively. 

The transmission of a wavepacket in the system with finite size No is briefly analysed 
($5); we find that for the energy width A E  z I / &  around E,  # 2, transmission 
exists. This implies that this transmission should be measurable. 

Finally we remark that very different transport properties can be found depending 
of the microscopic details (correlation between diagonal or off-diagonal disorder) of 
the system. 
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